High order effects in one step reaction sheet jump conditions for premixed flames
نویسندگان
چکیده
The differences need to be understood between the leading order jump conditions, often assumed at a flame sheet in combustion theory, and the actual effect of a one step chemical reaction governed by Arrhenius kinetics. These differences are higher order in terms of a large activation temperature analysis and can be estimated using an asymptotic approach. This paper derives one order of asymptotic correction to the leading order jump conditions that are normally used for describing premixed laminar combustion, providing additional contributions that are due to curvature, flow through the flame sheet and the temperature gradient into the burnt gas. As well as offering more accurate asymptotic results, these can be used to estimate the errors that are inherent in adopting only the leading order version and they can point towards major qualitative changes that can occur at finite activation temperatures in some cases. Applied to steady non-adiabatic flame balls it is found that the effect of a non-zero temperature gradient in the burnt gas provokes the most serious deficiency in the asymptotic approach.
منابع مشابه
Reaction-Sheet Jump Conditions in Premixed Flames
The fundamental differences between the leading-order jump conditions, often assumed at a flame sheet in combustion theory, and the actual effect of a chemical reaction that satisfies Arrhenius kinetics with a finite activation temperature, need to be understood. These differences are “higher order” in terms of a large activation temperature analysis. However, they do provide a quantitative est...
متن کاملStrained premixed flames: Effect of heat-loss, preferential diffusion and reversibility of the reaction
We provide an analytical description of the effect of preferential diffusion and volumetric heat-loss on strained premixed flames within a reversible chemistry model. The model comprises a single reversible reaction of the form F P whose forward and backward rates follow an Arrhenius law. An asymptotic analysis of the problem is carried out in the limit of infinitely large activation energy of ...
متن کاملEffects of Small-Scale Turbulence on NOx Formation in Premixed Flame Fronts
Abstract A flamelet-based approach that accounts for turbulence-chemistry interaction has been formulated to simulate NOx formation in turbulent lean premixed combustion. In the simulations, the species NO is transported and solved with the chemical source term being modelled through its formation in flame fronts and its formation rate in post-flame regions. The flame-front NO and post-flame NO...
متن کاملNumerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air
The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding ...
متن کاملA Direct Numerical Simulation-Based Analysis of Entropy Generation in Turbulent Premixed Flames
A compressible single step chemistry Direct Numerical Simulation (DNS) database of freely propagating premixed flames has been used to analyze different entropy generation mechanisms. The entropy generation due to viscous dissipation within the flames remains negligible in comparison to the other mechanisms of entropy generation. It has been found that the entropy generation increases significa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003